MANAGEMENT OF ASTHMA
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
</tr>
<tr>
<td>Definition of asthma</td>
<td>106</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>107</td>
</tr>
<tr>
<td>Clinical features</td>
<td>108</td>
</tr>
<tr>
<td>Indications for referral to a paediatrician for specialist management</td>
<td>109</td>
</tr>
<tr>
<td>Diagnosis of paediatric asthma</td>
<td>110</td>
</tr>
<tr>
<td>Natural history of asthma</td>
<td>112</td>
</tr>
<tr>
<td>Management</td>
<td>113</td>
</tr>
<tr>
<td>Inhaler devices</td>
<td>125</td>
</tr>
<tr>
<td>Asthma action plan/Home management plan</td>
<td>126</td>
</tr>
<tr>
<td>References</td>
<td>127</td>
</tr>
<tr>
<td>Guideline Committee</td>
<td>132</td>
</tr>
</tbody>
</table>
FOREWORD

Asthma is a heterogeneous disease and the phrase “asthma syndrome” is probably better than the word “disease” to describe the condition. Wheezing is perhaps the commonest cause of hospital admission in Sri Lankan children[1]. The Sri Lankan phase of the International Study of Asthma and Allergies in Childhood (ISAAC) found that the prevalence rate of childhood asthma in this country is between 15-20% with some areas reaching figures as high as 35-40%. It is also a common cause of school absenteeism[2].

Childhood asthma has many and varied facets like different modes of presentation, precipitation by many trigger factors and variable responses to medication. Therefore, asthma cannot be managed properly without treating the entire patient, educating the parents and possibly modifying the environment.

This booklet containing management guidelines for childhood asthma was prepared by a subcommittee appointed by the Sri Lanka College of Paediatricians under the Health Sector Development Project by the Ministry of Health, Sri Lanka. This was funded by the World Bank.

The guidelines are meant for clinicians who manage childhood asthma in different parts of the country. The text contains more information than the wall charts about childhood asthma.

Due consideration has been given to levels of evidence based on published references and the availability of facilities in different areas of the country.

Asthma Guideline Sub Committee
Sri Lanka College of Paediatricians
Asthma is a chronic inflammatory disorder of the airways characterized by an obstruction to airflow, which may be completely or partially reversible with or without specific therapy.

Airway inflammation is associated with airway hyper-reactivity or bronchial hyper-responsiveness (BHR), which is defined as the inherent tendency of the airways to narrow in response to a variety of stimuli (e.g., environmental allergens and irritants) [3].
Bronchospasm, mucosal oedema, and mucus plugs

Airway obstruction

Interactions between environmental and genetic factors result in airway inflammation

Bronchospasm, mucosal oedema, and mucus plugs

Increased resistance to airflow and decreased expiratory flow rates

Alveolar hypoventilation

Hyperinflation

Ventilation-perfusion mismatch.

In early stage, hypoxaemia without carbon dioxide retention occurs. With worsening obstruction carbon dioxide retention occurs

Respiratory alkalosis in the early stage and later result in metabolic and respiratory acidosis [3]
CLINICAL FEATURES

- Wheeze.
- Cough which is chesty, repetitive in nature and which occurs primarily or becomes worse in the night or early hours of the morning.
- Cough may be precipitated by exercise or crying and may be paroxysmal.
- Breathlessness, chest tightness.

Cough is often an early symptom of asthma in children, which can be overlooked for years, especially if the airway obstruction has not been severe enough to produce overt wheezing.

Presence of a wheeze as noted by parent/s or documented by a clinician is perhaps the best evidence for asthma in children.

Symptoms may be of

- varying severity.
- short or long duration.

Symptoms may be precipitated by a wide variety of triggers and may get worse in the late evening or at night.
Common precipitating factors

- Viral respiratory tract infections
- Exercise
- Cold dry air
- Air pollutants
- Tobacco smoke and other types of smoke
- Stress
- Psychological factors
- Drugs e.g. aspirin, β blockers

INDICATIONS FOR REFERRAL TO A PAEDIATRICIAN FOR SPECIALIST MANAGEMENT

- When the diagnosis is uncertain

Persistence of cough with sputum production
Contact history of tuberculosis
Suspected foreign body inhalation
Severe upper respiratory tract symptoms
Persistence of symptoms since birth
Unexpected physical signs
(localized signs in the lung, stridor, abnormal cry or voice)
Family history of unusual chest disease
• Failure to respond to conventional treatment, particularly bronchodilators and/or inhaled steroids
• Associated failure to thrive
• Parental anxiety or need for reassurance

DIAGNOSIS OF PAEDIATRIC ASTHMA

The diagnosis is primarily clinical as objective tests are often difficult to perform in children.

Diagnosis of asthma in children is based on [4]:
- the presence of key features and careful consideration of alternative diagnoses
- improvement with bronchodilators
- repeated assessment of the child, questioning the diagnosis if management is ineffective

Other causes of recurrent wheeze in children
- Intra bronchial foreign body
- Recurrent lower respiratory tract infections
- Mediastinal masses
- Heart failure
- Gastro oesophageal reflux
- H-type tracheo oesophageal fistula
- Immune deficiency
- Loeffler syndrome
- Vascular rings
- Cystic fibrosis
- Ciliary dyskinesia
Objective Tests:

- May be possible in children more than 5 years of age.
- Asthma causes a decrease in peak expiratory flow (PEF) and forced expiratory volume in the first second (FEV₁). One or both could be measured. However, these measurements may be normal between episodes of bronchospasm.
- Variability of PEF and FEV₁, either spontaneously over time or in response to bronchodilator therapy is a characteristic feature of asthma.
- The percentage PEF variability (amplitude % best) of 20% or more is highly suggestive of asthma [5,6,7,8].

\[
\text{Percentage PEF variability (Amplitude % best) = } \frac{(\text{Highest} - \text{Lowest})}{\text{Highest}} \times 100
\]

An example is illustrated below:

\[
\begin{align*}
\text{Highest PEF} & = 400 \text{ L/min} \\
\text{Lowest PEF} & = 300 \text{ L/min} \\
\text{Amplitude} & = 400 \text{ L/min} - 300 \text{ L/min} = 100 \text{ L/min} \\
\text{Percentage PEF variability (Amplitude % best)} & = \frac{100}{400} \times 100 = 25%
\end{align*}
\]

Other investigations:

- RAST test and allergic skin tests may be useful in children with atopy. However, these are often not available in Sri Lanka. Instead, trigger factors could often be obtained from parents and children.

Chest x-ray

Hypersensitivity tests

Indications

- When the diagnosis is uncertain (At least one x-ray to rule out other conditions)
- Severe/life threatening episode responding poorly to therapy (To rule out conditions like pneumothorax & pneumonia)
NATURAL HISTORY

Majority
- Grow out of wheeze
 - Males more than females
 - Children presenting less than 3 years [9,10,11]

Minority
- Increased risk of adulthood wheeze is associated with:
 - Increasing frequency & severity of childhood wheeze
 - Co-existent atopy
 - Childhood onset after 3 years
 - Persistent airway hyper-responsiveness
 [9,12, 13,14,15,16,17,18,19]

Childhood wheeze is more common
- Following bronchiolitis
- In children born prematurely
- Maternal antenatal smoking
- Parental and sibling atopy
 [9, 20,21,22,23,24,25,26,27]
MANAGEMENT

Goals of asthma therapy in children [4,28]

Minimal, ideally no, symptoms during the day or at night
Minimal, ideally no exacerbations
Minimal use or no necessity for the use of reliever short acting β₂ agonist
FEV₁ and/or PEF over 80% of personal best or predicted normal
Minimal, ideally no adverse effects from medications
Normal activities and rare school absences
Optimum growth of the child
Minimal effects on other family members

Non pharmacological management

Primary prevention
- Breast feeding – most beneficial in children with maternal atopy.
- Hygiene hypothesis e.g. exposure to infections at early age reduces the risk.
- Maternal smoking in pregnancy increases the risk.

No clear benefits
- Avoidance of postnatal allergen exposure
- Modified infant formulae (hydrolysate of whey/casein or soy formulae)

[29,30,31,32,33,34,35,36,37,38,39]

Secondary prevention
Avoid/minimize:
- identified allergens e.g. food/pollen
- Smoking Active (teenagers)
- Passive
- Air pollution
- Obesity

No clear benefits
- House dust mite control
- Complementary or alternative medicine
- Generalized dietary restrictions (traditional Chinese medicine, acupuncture, homeopathy, hypnosis, yoga, Buteyko)
- Vitamin C
- Goat’s milk

[40,41,42,43,44,45,46,47,48,49,50,51,52,53,54]
PHARMACOLOGICAL MANAGEMENT

- Management of an acute exacerbation
- Long term management

Management of an acute exacerbation

Exacerbations could be mild, moderate or severe according to the intensity of symptoms and signs [4,55].

Severity of an acute exacerbation

<table>
<thead>
<tr>
<th>Age</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 2 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Normal</td>
<td>Normal</td>
<td>Disturbed</td>
</tr>
<tr>
<td>Feeding</td>
<td>Normal</td>
<td>Normal</td>
<td>Disturbed</td>
</tr>
<tr>
<td>Speech</td>
<td>-</td>
<td>Normal</td>
<td>-</td>
</tr>
<tr>
<td>Audible wheeze</td>
<td>Nil</td>
<td>Nil</td>
<td>Present</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Respiratory rate/min</td>
<td>< 50</td>
<td>< 40</td>
<td>50-60</td>
</tr>
<tr>
<td>Use of accessory muscles</td>
<td>Nil</td>
<td>Nil</td>
<td>Present</td>
</tr>
<tr>
<td>Chest in drawing</td>
<td>Nil</td>
<td>Nil</td>
<td>Present</td>
</tr>
<tr>
<td>Air entry</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Lung signs</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Pulse/min</td>
<td>< 110</td>
<td>< 100</td>
<td>110-130</td>
</tr>
<tr>
<td>PEF</td>
<td>-</td>
<td>70-90% of predicted</td>
<td>-</td>
</tr>
<tr>
<td>SpO₂</td>
<td>>92%</td>
<td>>92%</td>
<td>≥ 92%</td>
</tr>
</tbody>
</table>

If a child has features across categories he/she should be managed according to the most severe category.
MANAGEMENT OF A MILD EXACERBATION

Place of management:
• Primary care unit
OR
• Emergency treatment unit
OR
• Outpatient department
OR
• General practice.

The mainstay of therapy is short acting β₂ adrenoceptor agonists (salbutamol or terbutaline).

• Ideal method of administration is through inhalers. As required dosage is recommended (<4 times/day), unless individual patients are shown to benefit from taking regular inhaled short acting β₂ agonists during the day (e.g. 4-6 hourly).
• Oral short acting β₂ agonists are often used in Sri Lanka due to economic constraints.
• Oral theophylline could be added to produce a synergistic effect.

These drugs should be continued until symptoms subside (usually 1-2 weeks).

Dosage of bronchodilator therapy for a mild exacerbation

<table>
<thead>
<tr>
<th>Drug</th>
<th>[55, 56]</th>
<th><2 yrs</th>
<th>2-6 yrs</th>
<th>> 6 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral salbutamol</td>
<td></td>
<td>100 µg/kg tds/qds</td>
<td>1 to 2 mg tds/qds</td>
<td>2 mg tds/qds</td>
</tr>
<tr>
<td>Salbutamol inhaler</td>
<td></td>
<td>2-4 puffs every 4-6 hours</td>
<td>tds/qds</td>
<td></td>
</tr>
<tr>
<td>Oral terbutaline</td>
<td></td>
<td>75 µg/kg tds</td>
<td>75 µg/kg tds</td>
<td>2.5 mg bd/tds</td>
</tr>
<tr>
<td>Theophylline</td>
<td></td>
<td>10 to 20 mg/kg/day divided tds/qds dosage</td>
<td>tds/qds</td>
<td></td>
</tr>
<tr>
<td>Slow release theophylline</td>
<td></td>
<td>10 to 20 mg/kg/day two divided doses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MANAGEMENT OF A MODERATE EXACERBATION [4,55]

- **Place of management:** primary care unit / emergency treatment unit / outpatient department / general practice.

- **Inhaled ß₂ agonists via**
 Metered dose inhaler (MDI) + spacer

 Dose: 2-4 puffs, increase by 2 puffs every 2 minutes up to 10 puffs according to response.

- **Nebulizers**
 Dose: Salbutamol nebulizer solution (5mg in 1 ml)

 <= 5 yrs - 0.5 ml salbutamol + normal saline 2 ml for 10 minutes
 > 5 yrs - 1.0 ml salbutamol + normal saline 2 ml for 10 minutes

- **Prednisolone 2mg/kg/day 3-5 days,** preferably given as morning single dose
 (no need to taper the dose at discontinuation)

 Children under 3 years are likely to require a facemask connected to the mouthpiece of the spacer for successful drug delivery. Inhalers should be actuated into the spacer in individual puffs and inhaled immediately by tidal breathing.

 Reassess within one hour

 Good response
 Continue bronchodilators 1-4 hourly and could be discharged when stable on oral drugs or 6 hourly inhaler therapy. Further management should be reviewed as to whether the child requires long term treatment.

 Poor response
 Repeat nebulization and the child should be referred to a hospital.
MANAGEMENT OF SEVERE AND LIFE THREATENING ATTACK OF ASTHMA

SEVERE EXACERBATION
CHILDREN < 2 YRS
- Too breathless to feed
- Marked respiratory distress
- Use of accessory muscles
- SpO₂ < 92% in air

CHILDREN ≥ 2 YRS
- RR > 50/min (2-5yrs)
- >120/min (>5 yrs)
- Use of accessory muscles
- SpO₂ < 92% in air

LIFE THREATENING ASTHMA
CHILDREN < 2 YRS
- Poor respiratory effort
- Apnoea
- Bradycardia
- Agitation
- Cyanosis
- SpO₂ < 92% in air

CHILDREN > 2 YRS
- Silent chest
- Altered level of consciousness
- Cyanosis
- SpO₂ < 92% in air

Oxygen through face mask (6-8 litres / min) or nasal cannula (2 litres / min)
Keep the child in the most comfortable position

Nebulised SALBUTAMOL with O₂
(≤5yrs - 0.5 ml / >5yrs - 1ml with 2ml N. saline)
+ IV HYDROCORTISONE 4mg/kg OR Oral PREDNISOLONE 2mg/kg (maximum 40mg)
Re-assess in 20-30 min

Combined nebulisation of SALBUTAMOL
(≤5yrs - 0.5 ml / >5yrs - 1ml +2ml N. saline and IPRATROPIUM BROMIDE 0.25mg with O₂
+ IV HYDROCORTISONE 4mg/kg
Continue nebulisations every 20-30 min / continuous nebulisations
Call senior clinician for help

ASSESS RESPONSE TO TREATMENT
Record respiratory rate, heart rate and O₂ saturation every 1-4 hrs

Responding
- Continue nebulised bronchodilators every 1-4 hrs
- Continue prednisolone for 3-5 days 2mg/kg/day (preferably as a single dose)
- Transfer to an institution with better facilities may be considered at any stage if the condition of the patient is of concern

Poor response
- Continue nebulisation at 20-30 min intervals or continuous nebulisation
- Bolus IV AMINOPHYLLINE (if not on oral theophyllines) 5mg/kg in 2ml/kg of normal saline over 30 min
 Followed by infusion 1mg/kg/hr OR / AND
- IV SALBUTAMOL bolus 15µg/kg over 10 min
 IV SALBUTAMOL infusion 1-5µg/kg/min
 Magnesium sulphate infusion 40mg/kg (max 2g) over 20 minutes can be considered for children over 5 yrs
 SC / IM adrenaline 10 µg/kg can be considered(0.1ml/kg of 1:1000)
 Consider chest X-RAY, arterial blood gases
 Antibiotics if indicated

Responding
- Combined nebulisation of SALBUTAMOL and IPRATROPIUM BROMIDE with O₂
 Continue nebulisations every 20-30 min

Poor response
- Consider IPPV
- Transfer to an institution with better facilities may be considered at any stage if the condition of the patient is of concern

If there is inadequate/ unsatisfactory response after all these manoeuvres consider IPPV
Special points to remember

- **Oxygen**
 Children with severe asthma or $\text{SpO}_2 < 92\%$ should receive high flow oxygen, 6-8 litres/minute via a tight fitting face mask with expiratory vents or 1-2 litres/minute through nasal cannulae.

- **Beta$_2$ agonist bronchodilators**
 All nebulisations should be undertaken either through oxygen driven nebuliser chambers with an oxygen flow rate of 6 to 8 litres per minute nebuliser or with added oxygen when the chamber is driven with compressed air by an electric compressor. Salbutamol nebulization is known to cause pulmonary vasodilatation and increase cardiac output. Hence, salbutamol nebulization without oxygen could produce ventilation perfusion mismatch (V/Q mismatch) or make the mismatch worse [3].

- **Intravenous salbutamol**
 The early addition of a bolus dose of intravenous salbutamol (15 μg/kg) can be an effective adjunct to treatment in severe cases [4]. Continuous infusion should be considered when there is uncertainty about reliable inhalation or for severe refractory asthma. This should be given preferably in an ICU setting with regular monitoring of oxygen saturation (SpO_2) and electrolytes in view of the possible occurrence of hypokalaemia [3,4].

- **Steroid therapy**
 Benefits can be apparent within 4-6 hours.

 Oral and IV steroids are of similar efficacy [57,58]. Treatment up to 3 days is usually sufficient, but the length of the course should be tailored to the number of days necessary to bring about recovery.

 Larger doses do not appear to offer a therapeutic advantage for the majority [59].

 Do not initiate inhaled steroids in preference to oral or IV steroids to treat acute asthma [59,60].
- **Ipratropium bromide**
 If symptoms are refractory to initial β2 agonist inhaled therapy, add nebulised ipratropium bromide (0.25 mg/dose mixed with beta2 agonist solution). Frequent doses up to every 20-30 minutes should be used early. The dose frequency should be reduced as clinical improvement occurs [60].

- **Intravenous aminophylline**
 Aminophylline IV is not recommended for children with mild to moderate acute asthma. Consider aminophylline for children with acute severe or life threatening bronchospasm unresponsive to maximal doses of bronchodilators and systemic steroids [4,60].

- **Antibiotics**
 Do not give antibiotics routinely in the management of acute asthma. Antibiotics are indicated when there is evidence of bacterial infection. The commonly used drugs are crystalline penicillin, amoxycillin, erythromycin and the cephalosporins.

- **Intravenous fluids**
 Children with prolonged severe asthma and those who have persistent vomiting will require intravenous fluids. It is advisable to be careful about fluid administration in view of the possible occurrence of the syndrome of inappropriate ADH secretion in some cases (hence, the normal daily requirement of fluid or two third of the requirement is recommended). Serum electrolytes should be measured and hypokalaemia should be corrected.

- **Intravenous magnesium sulphate**
 This is a form of treatment for acute asthma although its use is currently restricted to refractory acute severe asthma. Doses of 25-40 mg/kg (maximum 2g) by slow infusion is recommended [4,61,62].

- **Discharge home**
 Children should be discharged when they have sustained improvement in symptoms, are stable on oral/inhaled bronchodilator ± steroid therapy, SpO2 > 92% in room air for 4 hours and PEF more than 75% of predicted normal.
Long-term management

Key Recommendations [4,28]

- Persistent asthma is most effectively controlled with daily anti-inflammatory therapy.
- A stepwise approach to pharmacological therapy is recommended to gain and maintain control of asthma.
- The amount and frequency of medication is dictated by asthma severity.
- Long term treatment should be continued at least for a period of 1 year.
- There are two appropriate approaches to gain control of asthma with inhaled steroids.

1. Step up method: Therapy is initiated at the step most appropriate to the initial severity of asthma. Stepping up is done as necessary and stepping down is performed when control is good.

2. Step down method: Therapy is initiated at a higher level than the patient’s step of severity at the onset. Once control is gained, step down the therapy. This approach will more rapidly suppress airway inflammation, restore pulmonary function, and allow for eventual asthma control at a lower dose of anti-inflammatory therapy (American asthma guide). This is likely to improve patient compliance.

- Regular follow up visits at 1 to 3 monthly intervals are necessary. Therapeutic strategies should be considered in concordance with clinician patient partnership strategies. Education of patients and parents is essential for achieving optimal pharmacological therapy.
- At each step, patients and parents should be advised to avoid or control precipitating factors.
- Referral to a paediatrician or co-management of the patient (GP+specialist) is recommended if there are difficulties in achieving or maintaining control of asthma or if the patient requires step 4 care (see below). For infants and young children, referral is recommended if the patient requires step 3 or 4 care and may even be considered if the patient requires step 2 care.
<table>
<thead>
<tr>
<th>Step of care</th>
<th>Symptoms/Day</th>
<th>Symptoms/Night</th>
<th>Daily medications</th>
<th>Other aspects</th>
</tr>
</thead>
</table>
| Step 1 | * twice a week or less. ** twice a month or less. FEV1 or PEF < 80% predicted. PEF variability <20%. | | No daily medication needed. | a. Management of exacerbations (see pages 9-11).
b. Frequent use of bronchodilators (2-3 times/day) warrants therapy at a higher step.
Education: teach basic facts about asthma. |
| Step 2 | * more than twice a week but less than once a day. ** more than twice a month. Exacerbations may affect activity. FEV1 or PEF < 80% predicted. PEF variability 20-30%. | Preferred treatment:
- Low dose inhaled steroids.
Alternative treatment:
- Sustained release theophylline
- leukotriene receptor antagonist.
- Ketotifen may be effective in younger children with atopy. | a & b
Education: teach basic facts about asthma and proper technique of using inhaler/spacer.
Avoid exposure to known precipitating factors.
Discuss home management plan (see page 21) |
| Step 3 | * once a day. ** more than once a week. Daily need of β2 agonist. Exacerbations affecting normal activities and twice or more a week; may last days. FEV1 or PEF 60% to 80% predicted. PEF variability > 30%. | Preferred treatment:
- Medium dose inhaled steroids OR
- Low dose inhaled steroids and long acting β2 agonist
Alternative treatment:
- Low dose inhaled steroids and either leukotriene receptor antagonist or theophylline
Preferred treatment for patients with recurrent severe exacerbations:
- Medium dose inhaled steroids and long acting β2 agonist.
Alternative treatment:
- Medium dose inhaled steroids and either leukotriene receptor antagonist or theophylline | a & b
Education: see step 2. |
| Step 4 | * Continual ** frequent Limited physical activities. Frequent exacerbations. FEV1 or PEF < 60% predicted. PEF variability >30%. | Preferred treatment:
- High dose inhaled steroids and long acting β2 agonist.
- May need oral steroids. | A & b
Education: see step 2 |

** Special group of patients **

Those with intermittent asthma with moderate to severe exacerbations triggered by viral infections may benefit from longterm leukotriene receptor antagonists.
The characteristics noted in the above table are general and may overlap because asthma is highly variable. Grading in a patient may change over time.

The presence of one of the features of severity is sufficient to place a patient in that category. An individual should be assigned to the most severe grade in which any feature occurs.

Patients at any level of grading can have mild, moderate or severe exacerbations.

Practice points to remember

- Long acting β_2 agonists are not licensed to use for children more than 4 years. However when there is a poor response to conventional therapy with no other alternative, it is justifiable to use these drugs in the management of younger patients.

- If asthma control remains sub-optimal after addition of an inhaled long acting β_2 agonist then the dose of steroid should be increased [4].

- If a trial of an add-on treatment is ineffective, stop the drug (or in the case of increased dose of inhaled steroids, reduce to the original dose) [4].

- The most important determinant of appropriate dosing is the clinician’s judgment of the patient’s response to therapy. The stepwise approach to therapy emphasizes that once control of asthma is achieved, the dose of medication should be carefully titrated to the minimum dose required to maintain control, thus reducing the potential for adverse effects.
• **Step down therapy**: review treatment every 1-3 months. If control is sustained for at least 3 months, a gradual stepwise reduction in the treatment may be possible. The dose of inhaled steroids may be reduced by about 25% every 2-3 months to the lowest dose required to maintain control. The drug should be continued for at least 12-24 months. It is important to advise parents that there is a possibility of relapses even when steroid dosage has been tapered down and withdrawn.

• **Step up therapy**: if control is not achieved (e.g. within one month), consider stepping up. However, one must first review patient medication technique, compliance and environmental control*. Reasons for poor control may be:

 * Poor compliance
 * Improper technique
 * Inadequate dosage
 * Inappropriate pharmacological management
 * Poor environmental control
 * Wrong diagnosis.

To regain control of asthma, a short course of prednisolone is often effective.

Usual dosages for long term control medications [28,55]

Inhaled steroids: preferred first line therapy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency of administration</th>
<th>Low dose (µg)</th>
<th>Medium dose (µg)</th>
<th>High dose (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclomethasone HFA</td>
<td>bd</td>
<td>50-200</td>
<td>200-400</td>
<td>>400</td>
</tr>
<tr>
<td>Budesonide</td>
<td>bd</td>
<td>100-200</td>
<td>200-600</td>
<td>>600</td>
</tr>
<tr>
<td>Fluticasone</td>
<td>bd</td>
<td>100-200</td>
<td>200-400</td>
<td>>400</td>
</tr>
</tbody>
</table>

Other long term control medications

<table>
<thead>
<tr>
<th>Combined medications</th>
<th>Fluticasone / salmeterol (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluticasone/salmeterol MDI/bid</td>
<td>50/25, 125/25, 250/25</td>
</tr>
<tr>
<td>Fluticasone/salmeterol DPI/bid</td>
<td>100/50, 200/50</td>
</tr>
<tr>
<td>Budesonide/formeterol</td>
<td>80/4.5, 160/4.5</td>
</tr>
</tbody>
</table>

Leukotriene modifiers

<table>
<thead>
<tr>
<th>Leukotriene modifiers</th>
<th>Daily oral dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montelukast</td>
<td>4 mg oral granules once a day (12 months-5 years)</td>
</tr>
<tr>
<td></td>
<td>4 mg chewable tablet once a day (2-5 years)</td>
</tr>
<tr>
<td></td>
<td>5 mg chewable tablet once a day (6-14 years)</td>
</tr>
<tr>
<td>Zafirlukast</td>
<td>10 mg tablet b.d for 7-11 years</td>
</tr>
</tbody>
</table>
Cough Variant Asthma

- Cough is the principal symptom.
- Frequently occurs at night.
- Examination during the day may be normal.
- Therapeutic trials with bronchodilator medications may be helpful in diagnosis.
- Once the diagnosis is established, treat according to the stepwise approach to long-term management of asthma [28].

Exercise-Induced Asthma (EIA)

- Many children with asthma experience cough, wheeze, or excessive fatigue when they exercise.
- Exercise may be the only precipitant of asthma symptoms for some patients.
- EIB if untreated can limit and disrupt otherwise normal lives.
- EIB usually occurs during or minutes after vigorous activity, reaches its peak 5 to 10 minutes after stopping the activity, and usually resolves in another 20 to 30 minutes.

Prevention and treatment:

- Optimise asthma control of the patient as EIA may indicate under-treated asthma.
- Pre-exercise medications:

 Short acting \(\beta \)-agonists:
 200 mcg of salbutamol 15 minutes before exercise
 or
 500 mcg terbutaline 15 minutes before exercise

 Long acting \(\beta \)-agonists:
 50 mcg salmeterol half an hour to 2 hours before exercise

 Sodium cromoglycate and nedocromil, 2-4 inhalations, taken shortly before exercise, are also acceptable.

 A lengthy warm up period before exercise may benefit.

Advice to parents and physical education teachers:

If the child exhibits signs of asthma during exercise

- The child should be allowed to rest.
- Use his/her reliever medication
- Should not be forced to continue physical activity
Inhaler devices

- Technique and training
 Prescribe inhalers only after patients have received adequate and specific training in the use of the device and have demonstrated satisfactory technique.

- Devices
 - < 2 years - metered dose inhaler (MDI) + Holding chamber
 - 2-5 years - MDI + Spacer device (with a face mask up to 3 years)
 - > 5 years - MDI + Spacer device / dry powder inhaler (DPI)
 - > 8 years - MDI alone may be possible

- Frequency of dosing of inhaled steroids
 Prescribe initially twice a day. Once a day inhaled steroids at the same total daily dose can be considered if good control is established.

- Prescribing devices
 The choice of the device may be determined by the choice of the drug. If the patient is unable to use a device satisfactorily, an alternative should be found.

 Reassess inhaler technique as part of the clinical review.

- Use and care of spacers
 The spacer should be compatible with the MDI being used. The drug should be administered by single actuation of the MDI into the spacer, each followed by inhalation.

 There should be minimal delay between MDI actuation and inhalation.

 Tidal breathing is as effective as single breaths.

 Spacers should be cleaned monthly rather than weekly. They should be washed with liquid detergent and allowed to dry in air. The mouthpiece should be wiped clean before use.

 Spacers are recommended to be replaced at least every 12 months but some may need changing every 6 months.
ASTHMA ACTION PLAN / HOME MANAGEMENT PLAN

<table>
<thead>
<tr>
<th>Name:</th>
<th>DOB:</th>
<th>Ward/clinic:</th>
<th>Hospital:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Green Zone: Doing well
- No cough or wheeze or chest tightness during day or night
- Can do usual activities

Yellow Zone: Asthma is getting worse
- Child has any of these:
 - Cough
 - Mild wheeze
 - Chest tightness
 - Coughing at night
 - First sign of a cold (if it is a known trigger)

Red Zone: Needs medical attention
- Very short of breath OR
- Quick relief medications have not helped (see yellow zone) OR
- Cannot do usual activities OR
- Symptoms are worse or same after 24 hrs in the yellow zone

<table>
<thead>
<tr>
<th>Medicine</th>
<th>How much to take</th>
<th>When to take</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Immediate go to the hospital
- Continue present treatment if applicable
- Give one dose of prednisolone
- Immediately go to the hospital

Prednisolone should not be repeated without doctor's advice

Add quick relief medications and continue green zone medication if applicable
- Oral salbutamol 8/H OR Oral terbutaline 8/H OR
- Salbutamol inhaler 2-4 puffs every 2-4 hours
- Oral theophylline

If symptoms improve
- Continue oral medication/inhaler as above for 5-7 days

If symptoms persist or worsen go to a doctor

<table>
<thead>
<tr>
<th>Medicine</th>
<th>How much to take</th>
<th>When to take</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue present schedule of treatment if applicable

<table>
<thead>
<tr>
<th>Medicine</th>
<th>How much to take</th>
<th>When to take</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise induced</th>
<th>Medicine</th>
<th>How much to take</th>
<th>When to take</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References
3. eMedicine - asthma

40. Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ. Exposure to house
dust mouse allergen (Der p 1) and the development of asthma in
41. Sherrill D, Stein R, Kurzius-Spencer M, Martinez F. Early sensitization to
allergens and development of respiratory symptoms. *Clin Exp Allergy*
1999; **29**: 905-11.
42. Carter MC, Perzanowski MS, Raymond A, Platts-Mills TA. Home
intervention in the treatment of asthma among inner-city children. *J
43. Rasmussen F, Siersted HC, Lambrechtsen J, Hansen HS, Hansen NC.
Impact of airway lability, atopy, and tobacco smoking on the development
of asthma-like symptoms in asymptomatic teenagers. *Chest* 2000; **117**:
1330-5.
44. McIntosh NA, Clark NM, Howatt WF. Reducing tobacco smoke in the
environment of the child with asthma: a cotinine-assisted, minimal-contact
Prevalence of asthma symptoms, diagnosis, and treatment in 12 - 14 year
old children across Great Britain (international study of asthma and
Effect of low concentrations of ozone on inhaled allergen responses in
Effect of nitrogen dioxide and sulphur dioxide on airway response of
49. Linde K, Jobst K, Panton J. Acupuncture for chronic asthma (Cochrane
Software.
50. Linde K, Jobst KA. Homeopathy for chronic asthma (Cochrane Review).
51. Hackman RM, Stern JS, Gershwin ME. Hypnosis and asthma: a critical
52. Holloway E, Ram FSF. Breathing exercises for asthma (Cochrane Review).

Guidelines were compiled by:

Dr B J C Perera Consultant Paediatrician, Lady Ridgeway Hospital, Colombo.

Dr K A W Karunasekera (co-ordinator) Senior Lecturer in Paediatrics, Faculty of Medicine, University of Kelaniya, Ragama.

Dr K P J Perera Senior Lecturer in Paediatrics, Faculty of Medicine, University of Kelaniya, Ragama.

Dr Manjula Kannangara Senior Lecturer in Paediatrics, Faculty of Medicine, University of Kelaniya, Ragama.

Dr Guwani Liyanage Senior Lecturer in Paediatrics, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda.

Dr Manel Fernando Consultant Paediatrician, Base Hospital, Kuliapitiya.